Зарубежные специалисты в области танкостроения, пытаясь создать образец танка, отвечающего современным требованиям ведения боевых действий с применением оружия массового поражения, считают, что боеспособность танка и его живучесть на поле боя во многом зависят от двигателя, которым он оснащён. В связи с этим во многих капиталистических странах, особенно в странах — участницах агрессивного блока , ведутся значительные работы по совершенствованию танковых двигателей.

В последние годы иностранные военные специалисты предъявляют к танковым двигателям повышенные требования. По их мнению, двигатель танка должен обладать не только высокой мощностью, но и надёжностью работы в любых климатических и географических условиях, иметь большой срок службы при минимальных трудозатратах на уход. Считается также, что современный танковый двигатель должен отвечать и таким требованиям, как многотопливность, лёгкий запуск, способность развивать полную мощность сразу после запуска, высокая приёмистость при разгоне и быстрая остановка при выключении, минимальный расход топлива. Все большее внимание при создании новых двигателей уделяется оптимальному соотношению их эффективности и стоимости.

В какой мере удовлетворяют этим требованиям двигатели современных танков, каковы достоинства и недостатки их, каким двигателям и при каких условиях отдать предпочтение в перспективных разработках? Ответы на эти вопросы содержатся в приведённой ниже статье Шрайера, перевод которой публикуется в сокращённом виде..

и Швейцария

На западногерманском основном боевом танке 1 устанавливается дизельный двигатель МВ838 Са-М500 (рис. 1). Весной 1955 года были проведены испытания 8-цилиндрового двигателя мощностью 630 л. с., который в настоящее время под маркой МВ837 устанавливается на швейцарском танке Р61, а вариант того же двигателя мощностью 660 л. с. — на танке Р68. 8-цилиндровый двигатель МВ837 Аа используется на западногерманской 90-мм самоходной противотанковой пушке «Ягдпанцер» и самоходной пусковой установке ПТУР SS-11, а 6-цилиндровый двигатель МВ833 Еа с турбонагнетателем — на БМП «Мардер».

Двигатель MB 838 Са-М500 западногерманского танка «Леопард»Рис. 1. Двигатель MB 838 Са-М500 западногерманского танка «Леопард».

Двигатель танка «Леопард» 1 предкамерный, имеет два нагнетателя с механическим приводом. Специально разработанная система смазки с сухим картером обеспечивает подачу масла даже при наклонах танка. Двигатель запускается легко, поскольку охлаждающую жидкость и масло можно быстро разогреть с помощью системы подогрева.

Танки М60А1, М60А1Е2 и М48АЗ оснащены дизельным двигателем AVDS-1790-2A (рис. 2), который является вариантом бензинового двигателя танка М48. Двигатель имеет два турбонагнетателя, для очистки подаваемого в цилиндры воздуха предназначены два сухих фильтра (предварительной и тонкой очистки).

Двигатель AVDS-1790-2A американского танка М60А1Рис. 2. Двигатель AVDS-1790-2A американского танка М60А1.

Танки Мк2 и Мк1 оборудованы двигателем L60 (рис. 3). Он является модифицированным вариантом авиационного дизельного двигателя фирмы «Юнкере», созданного ещё перед второй мировой войной. Двигатель L60 меньше по ширине, но больше по высоте и развивает такую же мощность, как 12-цилиндровый двигатель, хотя его поршни испытывают более высокие нагрузки. Отсутствие клапанного механизма упрощает конструкцию двигателя L60, однако при этом необходимо иметь второй коленчатый вал. В двигателе использована система смазки с сухим картером и двухступенчатая очистка воздуха.

Разрез двигателя L60 фирмы «Лейланд»Рис. 3. Разрез двигателя L60 фирмы «Лейланд».

. На танке АМХ-30 установлен двигатель HS110 (рис. 4), Этот двигатель снабжён нагнетателями типа «Холсет». Для очистки воздуха предназначены два фильтра с масляными ваннами. В двигателе применяется топливоподающая система типа «Бош», а в головке блока цилиндров — вихревые камеры. Коленчатый вал двигателя имеет семь коренных шеек. Система смазки с сухим картером включает один нагнетающий и два откачивающих масляных насоса. Для заводки двигателя используются два синхронно работающих стартера.

Двигатель HS 110 французского танка АМХ-30Рис. 4. Двигатель HS 110 французского танка АМХ-30.

Для опытного танка ST-B используется дизельный двигатель 10ZF типа 21WT. Каждый блок цилиндров снабжён турбонагнетателями. Двигатель создан на основе четырёхтактного двигателя, выпускавшегося во время второй мировой войны для быстроходных патрульных катеров. По своим характеристикам он не превосходит другие танковые двигатели.

Швеция

Танк STRV 103В является первым, в котором используется комбинированная силовая установка, состоящая из основного поршневого двигателя К60 (рис. 5) английской фирмы «Роллс-Ройс» и вспомогательного газотурбинного двигателя типа 553 американской фирмы «Катерпилер». Оба двигателя могут работать вместе или раздельно. Газотурбинный двигатель, например, используется для запуска поршневого двигателя или включается в работу для повышения маневренности танка в бою. При работе обоих двигателей крутящий момент передаётся через механическую коробку передач, а при работе одного двигателя К60 — через гидротрансформатор. Максимальный крутящий момент при трогании с места, когда включён газотурбинный двигатель, почти в шесть раз превышает номинальное значение крутящего момента.

Разрез двигателя К60 фирмы «Роллс-Ройс»Рис. 5. Разрез двигателя К60 фирмы «Роллс-Ройс».

Танковые силовые установки. В основных капиталистических государствах до недавнего времени развивали только поршневые двигатели. В настоящее время положение изменилось. К числу новых разрабатываемых танковых двигателей относятся газотурбинные двигатели и дизельные варианты двигателя Венкеля. Однако ещё рано говорить, какое влияние на будущее танка окажет роторный двигатель. До сих пор остаются нерешёнными многие проблемы, например вибрация, вызываемая трением ротора о стенки корпуса. Тем не менее многие сторонники роторного двигателя (особенно в Великобритании) связывают с ним надежды на обеспечение высокой маневренности будущих танков.

Дизельные двигатели

Опытный образец двигателя МВ873 Ка (рис. 6) западногерманского танка KPz70 (МВТ70) на 30% превосходит по удельной мощности двигатели таких современных танков, как «Леопард» и АМХ-30. Однако требование иметь на танке мощный двигатель противоречит не менее жёсткому требованию уменьшения объёма силовой установки.

Двигатель МВ873 Ка западногерманского танка KPz70Рис. 6. Двигатель МВ873 Ка западногерманского танка KPz70.

Чем больше габариты силовой установки, тем больше объём корпуса танка. Хотя вес силовой установки составляет всего 4—5% веса танка, она занимает около 10% внутреннего объёма машины. Вес корпуса равен 30—40% боевого веса танка. Увеличение бронированного объёма увеличивает вес танка гораздо больше, чем возрастание веса силовой установки, поэтому при равных условиях выгоднее иметь более тяжёлый двигатель, чем двигатель, занимающий больший объём. По габаритной мощности двигатель танка KPz70 почти вдвое превосходит показатели двигателей танков «Леопард» и АМХ-30. Двигатель танка KPz70 на 10% тяжелее двигателя танка «Леопард» 1 и почти на 30% тяжелее двигателя танка АМХ-30. Однако его вес на единицу мощности, равный 1,29 кг/л. с., почти на 40% выше, чем у двигателя танка «Леопард», и на 32% выше, чем у двигателя танка АМХ-30. Это достигнуто главным образом благодаря увеличению числа оборотов двигателя и применению наддува с помощью двух турбокомпрессоров, использующих энергию выхлопных газов, с последующим охлаждением подаваемого в цилиндры воздуха. Только за счёт турбонаддува мощность двигателя МВ873 Ка возросла на 45% по сравнению с мощностью двигателя МВ838 Са-М500, имеющего механический нагнетатель.

Особые проблемы возникают в связи с необходимостью обеспечить работоспособность танковых двигателей в диапазоне температур от — 45°С до + 50°С. Низкие температуры ухудшают запуск двигателя, а повышающаяся при падении температуры вязкость масла не только затрудняет смазку подшипников, но и увеличивает внутреннее трение в двигателе. При температуре — 20°С сопротивление вращению коленчатого вала в три-четыре раза выше, чем при температуре +15°С. Температура, необходимая для самовоспламенения горючей смеси, достигается только при давлении 30—40 кг/кв. см в конце такта сжатия и одновременно при 100—150 оборотах коленчатого вала в минуту. Запуск затрудняется вследствие повышения вязкости дизельного топлива при низких температурах (при — 20°С его вязкость почти в 10 раз больше, чем при +15°С), поскольку испаряемость охлаждённого топлива снижается и оно попадает в камеру сгорания, будучи недостаточно распылённым для образования хорошей рабочей смеси и её воспламенения. Наличие подогревателя охлаждающей жидкости и масла или воспламенительного устройства для запуска сжатым воздухом увеличивает объём силовой установки и её стоимость.

Требование обеспечить эффективную работу двигателя в любых условиях выдвигает проблемы, связанные с охлаждением при высоких температурах.

Выбор типа системы охлаждения двигателя представляет собой трудную задачу. Американские и японские специалисты отдают предпочтение системе воздушного охлаждения, несмотря на присущие ей недостатки. Западноевропейские специалисты считают более выгодной систему жидкостного охлаждения из-за её способности интенсивнее отводить тепло от нагретых частей двигателя. Стремление получить более высокую мощность за счёт наддува и повышения степени сжатия вызывает проблемы, связанные с напряжённостью условий работы некоторых деталей двигателей и частично с возрастанием объёма силовой установки. От дизельного двигателя должно отводиться 25 — 30% тепла, выделяемого в камере сгорания. Поверхность ребёр в двигателях воздушного охлаждения обычно в 12—20 раз превышает поверхность камеры сгорания, поэтому конструкцию их необходимо совершенствовать. Система жидкостного охлаждения позволяет избежать перегрева деталей двигателя, однако габариты вентилятора этой системы могут оказаться больше, чем у двигателей воздушного охлаждения.

Снижение вязкости масла вследствие повышения температуры ведёт к большому износу двигателя, уменьшая ресурс его работы. Во Франции был предложен метод поддержания нормальной рабочей температуры двигателя при температуре окружающего воздуха до +60°С. Скорость вращения вентилятора системы охлаждения двигателя танка АМХ-30 может постепенно увеличиваться в соответствии с повышением температуры. Вентилятор приводится в движение посредством гидромуфты, управляемой термостатом.

Для эффективной и надёжной работы двигателя в различных климатических и погодных условиях требуется хорошая очистка воздуха. Чтобы износ трущихся поверхностей поршня и цилиндра был в допустимых пределах, содержание пыли в воздухе, поступающем в двигатель, не должно превышать 0,001 г/куб. м. Для оценки сложности задачи, стоящей перед разработчиками воздухоочистителей, достаточно сказать, что двигатель западногерманского танка KPz70 при работе на неполную мощность (60% максимальной) потребляет в час около 3500 куб. м воздуха. Важную роль для очистки воздуха играет конструкция воздухоочистителя и его месторасположение. Например, на зимних испытаниях танка «Леопард» было обнаружено, что воздухоочистители быстро забивались льдом. Установка дополнительных экранов для прикрытия верхней ветви гусеницы в определённой мере устранила этот недостаток и в то же время улучшила защиту танка от огня противника.

Танковая силовая установка, оснащённая высокооборотным дизельным двигателем, может иметь гарантийный срок службы 15—20 тыс. км. Межремонтный срок службы двигателей западногерманских военных машин составляет около 10 тыс. км. Запуск двигателей возможен при температуре ниже — 18°С без вспомогательных устройств (например, танка «Леопард»). Двигатели могут надёжно и без перерыва работать на полной мощности в тяжёлых климатических условиях.

Наиболее сложной проблемой при создании двигателя является обеспечение высокой его приёмистости. Более высокая приёмистость двигателя способствует уменьшению уязвимости танка на поле боя, она становится критерием надёжности его конструкции. Танк, движущийся под прямым углом к линии огня танка противника, может избежать поражения за счёт быстрого перемещения в момент начала по нему стрельбы. Но это явление на поле боя имеет решающее значение не на всех дальностях. Если за время полёта снаряда танк сможет переместиться более чем на половину собственной длины, то он уклонится от снаряда, выпущенного из орудия неприятельского танка, оснащённого автоматическим вычислителем упреждения. Однако для этого танку требуется очень большое ускорение, особенно если стрельба по нему ведётся подкалиберными снарядами (рис. 7). Чтобы на удалении 2000 м уклониться от 105-мм подкалиберного снаряда с отделяющимся поддоном, танк длиной 6,8 м должен двигаться с ускорением 3,25 м/сек2. Если взять для примера французский 105-мм кумулятивный снаряд, то ускорение танка, необходимое для уклонения от него, должно быть не менее 1,15 м/сек2.

Возможность уклонения танка длиной 6,8 м при стрельбе по нему подкалиберными (ПК), кумулятивными (К), бронебойно-фугасными с пластичным ВВ (Б) и осколочно-фугасными (ОФ) снарядами
Рис. 7. Возможность уклонения танка длиной 6,8 м при стрельбе по нему подкалиберными (ПК), кумулятивными (К), бронебойно-фугасными с пластичным ВВ (Б) и осколочно-фугасными (ОФ) снарядами.

Большинство современных танков теоретически могут избежать поражения кумулятивными снарядами, но они едва ли способны уклониться от подкалиберных снарядов. В настоящее время трудно обеспечить высокую маневренность танков. Приемистость двигателя станет играть ещё более важную роль в будущем, когда установят автоматические вычислители в системах управления огнём.

Высокая приёмистость двигателя предполагает увеличение среднего эффективного давления в камере сгорания за счёт применения приводных или турбокомпрессорных нагнетателей. Каждый тип системы наддува двигателя танка в настоящее время является предметом горячих дискуссий. Представляет интерес система трубонаддува с охлаждением воздуха, поскольку механический наддув не обеспечивает среднее эффективное давление более 9,85 кг/см Важно учесть при этом, что турбонагнетатель имеет малую инерционность. Необходима согласованность в работе всей системы: двигатель — нагнетатель — гидродинамический преобразователь — коробка передач. Усовершенствование этой системы позволит танку достигать максимальной скорости за минимальное время.

Мощность поршневого двигателя определяется числом оборотов коленчатого вала, литражом и средним давлением в камере сгорания. Иногда кажется, что наиболее эффективный путь — увеличение числа оборотов коленчатого вала. Однако это в свою очередь увеличит скорость движения поршней. Например, скорость движения поршня двигателя японского танка ST-B при максимальных оборотах достигает в среднем 11 м/сек, а поршня двигателя танка М60А1 — 11,7 м/сек. Этот показатель выше у двигателей жидкостного охлаждения: у двигателя танка АМХ-30 — около 11,8 м/сек, танка «Леопард» — 12,8 м/сек и западногерманского KPz70 — 13,4 м/сек. При более высоких скоростях поршни трудно смазывать. Современный уровень развития систем смазки позволяет иметь скорость движения поршня около 15 м/сек. В ближайшем будущем не ожидается появление системы смазки, обеспечивающей скорость движения поршня свыше 16 м/сек.

Увеличение числа оборотов двигателя отрицательно влияет на процесс сгорания топлива. Для самовоспламенения топлива необходима температура сжатого воздуха по крайней мере 500—600°С. Несмотря на усовершенствования в системе очистки цилиндров, до последнего времени не удается избежать частичного распада молекул топлива на углеродсодержащие составные части, которые имеют малую скорость сгорания и, кроме того, удлиняют процесс сгорания горючей смеси. В результате увеличения числа оборотов сокращается время реакции, происходит неполное сгорание, ухудшается наполнение камер сгорания топливом, снижается мощность двигателя и увеличивается расход топлива.

Увеличение эффективного давления в камере сгорания — сложная задача. На современном уровне двигателестроения за счёт увеличения давления в камере сгорания можно повысить мощность двигателя по крайней мере вдвое, используя многоступенчатый турбокомпрессор высокого давления с промежуточным охлаждением воздуха. Однако в камере сгорания при давлении воздуха 4—4,6 ат ухудшается процесс горения вследствие слишком большой разницы в скоростях движения молекул топлива и воздуха.

Второй метод повышения мощности двигателя заключается в применении разработанных американской фирмой «Континенталь» двигателей с переменной степенью сжатия. Такие двигатели имеют поршни переменной геометрии, что позволяет изменять степень сжатия горючей смеси от 22 до 10. Мощность двигателя этого типа можно было бы увеличить на 40% и более без существенного повышения напряжений в конструкции. Но, несмотря на это, уже почти достигнут предел мощности дизельного двигателя, дальнейшее повышение мощности возможно только за счёт сокращения срока его службы или усложнения конструкции, что приведёт к увеличению стоимости. Для перспективных танков весом 32—50 т необходима удельная мощность в пределах 30—35 л.с./т.

Газотурбинные двигатели (ГТД)

В качестве силовой установки для танка может применяться только двух- или трёхвальный ГТД, оснащённый теплообменником и промежуточным холодильником. Такой двигатель имеет удовлетворительные рабочие и экономические характеристики. Современный ГТД мощностью 2000 л. с. вместе с теплообменником занимает объём, почти в два раза меньший, чем дизельный двигатель.

ГТД наилучшим образом удовлетворяет требованию лёгкого запуска и немедленной работы с полной нагрузкой. По сравнению с дизельным двигателем он имеет небольшое число вращающихся деталей и подшипников, поэтому вязкость смазочных масел влияет на его работу меньше. При низких температурах холодный запуск ГТД практически зависит только от ёмкости аккумулятора, такой двигатель может работать с полной нагрузкой с момента запуска.

ГТД лучше любого другого двигателя удовлетворяет требованию многотопливности — он может работать на любом топливе с октановым числом около 100. Однако турбина и выхлопная система двигателя подвергаются сильной коррозии при использовании топлива, содержащего ванадий. Крутящий момент простой двухвальной турбины изменяется примерно в два раза. Вес и объём коробки передач можно несколько уменьшить, но надобность в гидротрансформаторе остаётся. Отрицательные качества ГТД проявляются при работе на режиме частичной нагрузки. Поскольку силовая установка большую часть времени работает с неполной нагрузкой (около 45%— с частичной нагрузкой, 35%— на холостом ходу и лишь около 20%— на полной мощности), она должна быть достаточно эффективной на разных режимах, но в этом отношении газотурбинный двигатель уступает дизельному.

Для обеспечения возможности торможения газотурбинным двигателем необходимо соединить два его вала. Это делается с помощью редуктора. Хорошая тормозная способность достигается путём продувки воздуха, нагнетаемого компрессором, а также потоком газа, движущимся в направлении, противоположном вращению лопастей турбины. Однако это делает конструкцию ГТД дорогой. Более простым решением является установка на танке гидродинамических тормозов, хотя для этого требуется система охлаждения.

При использовании ГТД можно уменьшить шум в танке. Более сложной проблемой, чем уменьшение высокочастотного шума работающей турбины, является борьба с шумом, вызванным потоком воздуха на входе в двигатель. В то же время уменьшить шум работающей турбины значительно труднее, чем снизить уровень шума дизельного двигателя путём установки глушителей.

За последние годы достигнуты успехи в повышении экономичности ГТД, хотя удельный расход топлива у них больше, чем у дизельных двигателей. Эффективные теплообменники позволяют снизить расход топлива, но не могут уменьшить относительно высокий расход при работе на малой мощности.

Гораздо серьёзнее является проблема уменьшения расхода воздуха. Газотурбинному двигателю воздух необходим для сгорания топлива и для отведения избытка тепла. Дизельный двигатель при полной нагрузке потребляет от 20 до 30 кг воздуха для сжигания 1 кг топлива, не считая воздуха, необходимого для охлаждения. Весь воздух, требуемый для ГТД, должен пройти через турбину, следовательно, он должен быть очищен. ГТД требует очищенного воздуха в три-четыре раза больше, чем дизельный двигатель.

Поскольку разрежение на входе в газотурбинный двигатель составляет 176 — 226 мм водяного столба, то есть в три-четыре раза меньше, чем у поршневого двигателя, использование воздухоочистителей с большим сопротивлением затруднено. Вследствие этого возникает проблема обеспечения движения танков при форсировании водных преград.

Высокая приёмистость в одинаковой степени обеспечивается как газотурбинным, так и дизельным двигателем. Приемистость дизельного двигателя может быть выше. Если бы рабочее колесо турбины ГТД было очень лёгким и способным воспринять большие нагрузки, вызванные высоким давлением газов, то турбина быстро набирала бы скорость от холостых оборотов до максимальной.

Возникает вопрос: если новые газотурбинные двигатели по своим эксплуатационным и механическим качествам не уступают дизельным двигателям или даже превосходят их, то почему они не получили широкого распространения в танковых конструкциях? Газотурбинные двигатели не устанавливались на танках (кроме шведского танка STRV 103, выпущенного в 1967 году) из-за недостаточной их эффективности и высокой стоимости.

У новых газотурбинных двигателей КПД составляет около 25% Для его увеличения необходимо снизить потери давления, повысить эффективность работы камеры сгорания, компрессора и турбины, увеличить допустимую рабочую температуру турбины, использовать более эффективный и лёгкий теплообменник.

Увеличение КПД многоступенчатого компрессора требует больших затрат. Температуру в камере сгорания также нельзя существенно повысить, поскольку она ограничена тепловыми напряжениями материала, из которого изготовлена турбина. Напряжения в материале в значительной степени зависят от используемого типа топлива, в последнем не допускается присутствие ванадия и серы.

Сейчас имеются ГТД, работающие при температурах от 850 до 920°С, гарантийный срок их службы составляет по крайней мере 9000 час. Газотурбинный двигатель AGT-1500 фирмы «Лайкоминг» работает, например, при температуре на входе в турбину 1193° С. Для достижения максимального срока службы газотурбинных двигателей температура в их камере сгорания не должна превышать 900° С.

Комбинированные силовые установки (например, на шведском танке STRV 103В) сочетают в себе лучшие качества дизельного и газотурбинного двигателей. Дизельный двигатель, обладающий хорошей характеристикой при неполной нагрузке, используется, как правило, при движении в обычных условиях, а газотурбинный двигатель, имеющий высокие характеристики крутящего момента, включается при движении по труднопроходимой местности, гарантируя надёжную работу в условиях холодной погоды и т. п.

С точки зрения расхода топлива комбинированная установка является экономичной. В ближайшем будущем можно получить удельную мощность комбинированной силовой установки 30 л. с./т и выше. Однако в настоящее время уменьшение веса и размеров комбинированной силовой установки представляет серьёзную проблему. Дополнительными трудностями являются высокая стоимость изготовления привода к газотурбинному двигателю, сложность системы управления данной установкой и большая нагрузка на подшипники. Кроме того, имеются затруднения в снабжении запасными частями и подготовке специалистов.

Характеристики некоторых танковых двигателей рассмотренных типов приведены в таблице.

Тактико-технические характеристики двигателей основных боевых танков зарубежных армии

Тактико-технические характеристики двигателей основных боевых танков зарубежных армии

Примечания: коленчатый вал — 2400 об/мин; 2 с устройством охлаждения воздуха; 3 с турбонагнетателем; < при 1950 об/мин на топливе DF-2; 1 при 1400 об/мин на топливе F46-185; s примерно при 2100 об/мин.

Добавить комментарий